Search results

Search for "inert-gas condensation" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • in the synthesis procedures. The most common physical methods used to generate NPs are high-energy ball milling, laser ablation, electrospraying, inert gas condensation, PVD, laser pyrolysis, flash spray pyrolysis, and melt mixing [16]. Chemical methods are the traditional and most widely used
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • study the fabrication and characterization of hafnium nanoparticles and hafnium nanoparticle thin films. Hafnium nanoparticles were grown in vacuum by magnetron-sputtering inert-gas condensation. The as deposited nanoparticles have a hexagonal close-packed crystal structure, they possess truncated
  • nanoparticles is reported for the first time in the literature. Keywords: energetic deposition; hafnium; inert-gas condensation; nanomechanical properties; nanoparticles; nanoparticle thin films; Introduction In the past decades, the interest in and the exploitation of metal nanoparticles (NPs) spread across
  • demonstrate high catalytic activity during hydrogenation of levulinic acid [17], nickel NPs, which find application as electrochemical sensor [18], and cobalt NPs, which exhibit high magnetic anisotropy [19]. Recently, we have reported that hcp hafnium nanoparticles fabricated by inert-gas condensation, when
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018

Diffusion and surface alloying of gradient nanostructured metals

  • Zhenbo Wang and
  • Ke Lu

Beilstein J. Nanotechnol. 2017, 8, 547–560, doi:10.3762/bjnano.8.59

Graphical Abstract
  • inert gas condensation and consolidation (IGC). Since then, studies have been performed to reveal the diffusion behavior of nanostructured metals worldwide. However, the measured results were rather scattered and even controversial. For instance, markedly promoted diffusion coefficients with a lower
PDF
Album
Review
Published 03 Mar 2017

Magnetic properties of iron cluster/chromium matrix nanocomposites

  • Arne Fischer,
  • Robert Kruk,
  • Di Wang and
  • Horst Hahn

Beilstein J. Nanotechnol. 2015, 6, 1158–1163, doi:10.3762/bjnano.6.117

Graphical Abstract
  • (e.g., by heating) [13][14]. The drawback of this approach is the lack of serious control over the size and density of the precipitates in the matrix. The alternative is to co-deposit preformed FM clusters (e.g., by inert gas-condensation) and AFM matrices [9][10][11]. In that case the cluster size can
PDF
Album
Letter
Published 13 May 2015

Morphology, structural properties and reducibility of size-selected CeO2−x nanoparticle films

  • Maria Chiara Spadaro,
  • Sergio D’Addato,
  • Gabriele Gasperi,
  • Francesco Benedetti,
  • Paola Luches,
  • Vincenzo Grillo,
  • Giovanni Bertoni and
  • Sergio Valeri

Beilstein J. Nanotechnol. 2015, 6, 60–67, doi:10.3762/bjnano.6.7

Graphical Abstract
  • magnetron sputtering, the technique used in this study. Tschöpe et al. [12] studied ceria NPs realized by magnetron sputtering from pure and mixed metal target and inert gas condensation, observing the high non-stoichiometry of these systems due to the particular synthesis method. The non-stoichiometry is
PDF
Album
Full Research Paper
Published 07 Jan 2015

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • -chemical methods has been designed for the synthesis of heterostructured magnetic particles [6], less is known about possible issues of methods that are based on inert-gas condensation, in which nanoparticles grow out of a supersaturated metal vapor. Yet, gas phase techniques possess several advantages
  • over their chemical counterparts: the high purity of the resulting samples, high throughput in continuous operating mode, and easy integration into other UHV manufacturing/analysis steps. Although early experiments used inert gas condensation in combination with thermal evaporation [7], magnetron
  • the origin of this effect remains unclear to date. In addition to the mean diameter, the particle size distribution has been analyzed. It was found to be close to Gaussian and only slightly skewed, which stands in contrast to results gained with other inert gas condensation techniques like thermal
PDF
Album
Full Research Paper
Published 14 Apr 2014

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • . Bulk nc metals are typically produced by severe plastic deformation [8][9][10][11], inert gas condensation [4][12] or electrochemical deposition [13]. The different approaches result in significant differences in dislocation and twin density, porosity and impurity levels of the nc metals, where, e.g
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • shown in Figure 3d. Hence, this kind of glass is called a multiphase nanoglass. Production of nanoglasses So far, nanoglasses have been produced in the following three ways: Inert-gas condensation One way to produce nanoglasses is by means of inert-gas condensation (Figure 4). This production process
  • , nanoglasses have been synthesized by inert gas condensation from a variety of alloys: Au–Si, Au–La, Cu–Sc, Fe–Sc, Fe–Si, La–Si, Pd–Si, Ni–Ti, Ni–Zr, Ti–P. Magnetron sputtering This method (Figure 5) has been applied so far to Au-based metallic glasses [7][8]. The nanoglass obtained consisted of glassy regions
  • with an average size of about 30 nm. Recent studies of the structure and the properties of nanoglasses produced by magnetron sputtering [7][8] suggest that their structure and properties are comparable to the ones of nanoglasses produced by inert gas condensation. Severe plastic deformation Due to the
PDF
Album
Review
Published 13 Sep 2013

Extended X-ray absorption fine structure of bimetallic nanoparticles

  • Carolin Antoniak

Beilstein J. Nanotechnol. 2011, 2, 237–251, doi:10.3762/bjnano.2.28

Graphical Abstract
  • annealing of the nanoparticles or in-flight annealing of FePt nanoparticles synthesised by condensation from the gas phase before landing onto a substrate as described below. Gas phase synthesis FePt nanoparticles can be prepared by an inert gas condensation method based on a DC magnetron sputtering process
PDF
Album
Review
Published 11 May 2011

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • . Possibly the simplest approach is ball milling of the corresponding bulk materials. This mostly yields a rather broad size distribution, which, in turn, often hinders the study of size-dependent properties [15]. A better defined physical approach is inert-gas condensation where NPs are formed by sputtering
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities